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Organic light-emitting diodes (OLEDs) and field-effect transis-
tors (FETS) based on-conjugated oligomers have been exten-
sively studied as molecular thin-film device©rganic n-type
semiconductors (electron-transport materials) with low electron-
injection barriers and high electron mobilities are required for
highly efficient OLED$ and n-type FET&.Radical anions of an

n-type semiconductor have to be generated easily at the interface

with a metal electrode (electron injection), and electrons must
move fast in the layer (electron mobility). Compared with organic
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p-type semiconductors (hole-transport materials), organic n-type Scheme 1

semiconductors for practical use are few and rather difficult to
develop. In the last paper, we reported that perfluorinated
phenylene dendrimers &4, and GsFoo) function as the
electron-transport layer of OLEDSA perfluorinated phenylene
with longer para-conjugation and higher electron affinity exhibited
better electron-transport capability. Perfluoro-1,3,5tgfphe-
nyl)benzene, which can be viewed as a perflupiguaterphenyl
derivative, showed the maximum luminance of 2860 ¢dan
24.4 V. To develop efficient organic n-type semiconductors and
improve the device performance, we decided to prepare perflu-
orinated phenylene oligomers with even longer para-conjugation.
In this work, we report the synthesis of perfluorinated oljgo(
phenylene)s RF-nPs: n = 5-8)° and the application for the
electron-transport layer of OLEDsThe use of highePF-nPs
dramatically improved the electron injection into the emission
layer. Two PF-6P derivatives containing trifluoromethyl and

perfluoro-2-naphthyl groups were also prepared, and the latter is
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a better electron transporter than conventional electron-transport
materials such as tris(8-quinolinolato)aluminum (Alq

We synthesized®F-5P to -7P by the organocopper cross-
coupling method, which has been successfully applied to perflu-
orinated phenylene dendrimérés shown in Scheme 1, 1,4-
dibromotetrafluorobenzen&)(was allowed to react with excess
2,3,5,6-tetrafluorophenylcoppe#)(in a THF/dioxane/toluene
mixture at 80°C for 48 h to give5 in 47%. Bromination of5
yielded perfluoro-4,4-dibromop-terphenyl 6) in 33%. A similar
reaction of 4,4dibromooctafluorobiphenyl7) with 4 followed
by bromination afforded perfluoro-4;4dibromop-quaterphenyl
(9). Treatment of excess pentafluorophenylcopféy with 6 and
9 produced perfluor@-quinquephenylRF-5P. CgoFop; MW =
778) and perfluorg-sexiphenyl PF-6P. CsgFos; MW = 926)
in 54 and 45%, respectively. Perfluopeseptiphenyl PF-7P:
CaoF30; MW = 1074) was obtained in 54% by using nonafluoro-
4-biphenylcopperll) and6. Two PF-6P derivativesl (CzgFso;
MW = 1026) and2 (CasF30; MW = 1098) were prepared by the
reactions oB with 4-trifluoromethyltetrafluorophenylcoppet %)

(7) See Supporting Information for the experimental details.
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Figure 1. Luminance-voltage characteristics of the OLEDs as a function
of the electron-transport layer.

and heptafluoro-2-naphthylcoppet3 in 60 and 49%, respec-
tively. The Ullmann coupling of perfluoro-4-bronmeuaterphe-
nyl (14), which was obtained by the reaction @fwith 11 in
51%, gave perfluor@-octiphenyl PF-8P. CygFss; MW = 1222)
in 73%3

Perfluorinated oligomers were purified by train sublimation

and used for characterization. They are colorless solids and

insoluble in common organic solverisThe structures were

determined by MALDI-TOF mass spectrometries and elemental

analyse<.The differential scanning calorimetry (DSC) measure-
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Figure 2. Current-voltage characteristics of the OLEDs as a function
of the electron-transport layer.

luminance and current density decreased slightly compareB-to
6P. A perfluoro-2-naphthyl group turned out to be an excellent
building block for constructing n-type semiconduct&¥sThe
luminance and current density Bfare higher than those of AJq
above 4.5 V. The luminance at 10.0 V reached 19970 £d/m
The above resultsPF-5P < PF-6P = PF-7P = PF-8P) are
contrary to our expectation because the low LUMO energy of a
higher PF-nP should facilitate the electron-injection from a
cathode to an electron-transport layBF(5P < PF-6P < PF-
7P < PF-8P).2® This might indicate that the rate of electron

ments indicated that the samples purified by train sublimation injection is not affected by the LUMO energy any more if its
are highly crystalline solids: The melting endotherm of each |eyg is low enough* We assume that electron mobilities are

oligomer PF-5P, 306;PF-6P, 352; PF-7P, 383;PF-8P, 410;1,

not very different in these molecules because solid-state morphol-

350; 2, 352 °C) is accompanied by a broad peak due t0 oqy s expected to be similar. Therefore, the electron mobility in
sublimation, which occurs simultaneously. No glass transitions {he |ayer rather than the electron injection at the interface could

were observed on the second heating.
OLEDs were made on indiurtin oxide (ITO)-coated glass
substrates by high-vacuum thermal evaporatiox (507 Torr)

be responsible for determining the current density?66P to
-8P.15
In conclusion, we have synthesized perfluorinated opgo(

of TPTE (a tetramer of triphenylamine) as the hole-transport layer phenylene)s up tp-octiphenyl and shown that they are efficient

(60 nm), Alg as the emission layer (40 nm), a perfluorinated

oligomer as the electron-transport layer (20 nm), LiF as the
electron-injection layer (0.5 nm), and aluminum as the cathode

(160 nm)7* For comparison, the device with Algs both the

n-type semiconductors. Becaus¥-nPs have high electron
mobilities, n-type FETs with these materials are quite interesting.
Fabrication of FETSs is currently underway and will be reported
elsewheré®

emission and electron-transport layers (60 nm) was also fabricated.

When a negative voltage was applied to Al, a green emission

due to Alg was observed. Figures 1 and 2 show luminance
voltage and currentvoltage characteristics of these OLEDs,
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